In situ XPS of competitive CO2/H2O absorption in an ionic liquid

Author:

Cole JordanORCID,Henderson Zoë,Thomas Andrew GORCID,Castle Christopher,Greer Adam JORCID,Hardacre ChristopherORCID,Scardamaglia MattiaORCID,Shavorskiy Andrey,Syres Karen LORCID

Abstract

Abstract Superbasic ionic liquids (SBILs) are being investigated as potential carbon dioxide (CO2) gas capture agents, however, the presence of H2O in the flue stream can inhibit the uptake of CO2. In this study a thin film of the SBIL trihexyltetradecylphosphonium 1,2,4-triazolide ([P66614][124Triz]) was deposited onto rutile TiO2 (110) using in situ electrospray deposition and studied upon exposure to CO2 and H2O using in situ near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS). The molar uptake ratio of gas in the electrosprayed SBIL (n gas :n IL) was calculated to be 0.3:1 for CO2, 0.7:1 for H2O, and 0.9:1 for a CO2/H2O mixture. NAP-XPS taken at two different depths reveals that the competitive absorption of CO2 and H2O in [P66614][124Triz] varies with sampling depth. A greater concentration of CO2 absorbs in the bulk layers, while more H2O adsorbs/absorbs at the surface. The presence of H2O in the gas mixture does not inhibit the absorption of CO2. Measurements taken during exposure and after the removal of gas indicate that CO2 absorbed in the bulk does so reversibly, whilst CO2 adsorbed/absorbed at the surface does so irreversibly. This is contrary to the fully reversible CO2 reaction shown for bulk ionic liquids (ILs) in literature and suggests that irreversible absorption of CO2 in our highly-structured thin films is largely attributed to reactions at the surface. This has potential implications on IL gas capture and thin film IL catalysis applications.

Funder

MAX IV

CALIPSOplus

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3