Abstract
Abstract
Development of next generation batteries is predicated on the design and discovery of new, functional materials. Divalent cations are promising options that go beyond the canonical Li-based systems, but the development of new materials for divalent ion batteries is hindered due to difficulties in promoting divalent ion conduction. We have developed a family of cathode materials based on the divalent cation conductor ZnPS3. Substitution of V for Zn in the lattice concomitant with vacancy introduction yields isostructural but redox-active materials that can reversibly store Zn2 + in the vacancies. A range of voltammetry and galvanostatic cycling experiments along with x-ray photoelectron spectroscopy support that redox is indeed centered on V and that capacity is dependent on the V content. The voltage of the materials is limited by the irreversible decomposition of the
[
P
2
S
6
]
4
−
polyanion above 1.4 V vs. Zn/Zn2 + . The reversible capacity before anion decomposition is limited to half the vacancies and is due to the relative ratios of oxidized and reduced V centers. Such observations provide useful design rules for cathode materials for divalent cation based battery technologies, and highlight the necessity for a holistic interpretation of physical and electronic structural changes upon cycling.
Funder
Arnold and Mabel Beckman Foundation
Resnick Sustainability Institute for Science, Energy and Sustainability, California Institute of Technology
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献