Impact of surface charges on energy deposition in surface dielectric barrier discharge: a modeling investigation

Author:

Ren ChenhuaORCID,Huang BangdouORCID,Zhang ChengORCID,Qi BoORCID,Chen Weijiang,Shao TaoORCID

Abstract

Abstract Surface charges have significant impact on the evolution of surface dielectric barrier discharge (SDBD). In this work, the role of residual surface charges on repetitively nanosecond pulsed SDBD in atmospheric air is investigated using a two-dimensional fluid model, based on the assumption of preserving the distribution of surface charges at the end of the previous high voltage (HV) pulse. In the bipolar mode when the polarity of residual surface charges is opposite to that of the current HV pulse, a lower breakdown voltage and more deposited energy can be observed, showing an obvious enhancement of SDBD. In the unipolar mode, residual surface charges suppress the development of discharges and energy deposition. It is found that more residual surface charges are accumulated during the negative pulsed discharge, which have a more pronounced effect on the subsequent positive pulsed one. This is explained by the fact that the negative surface streamers directly contact the dielectric and charge it, while the positive surface streamers float above the dielectric, forming a ion-rich region near the surface. The results in this work demonstrate the mechanism of how residual surface charges affect discharge dynamics, which can be utilized to regulate energy deposition in SDBDs.

Funder

National Key R&D Program of China

National Science Fund for Distinguished Young Scholars

Young Elite Scientist Sponsorship Program by CAST

National Natural Science Foundation of China

State Key Laboratory Of Alternate Electrical Power System With Renewable Energy Sources

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3