Energy transfer in interaction of a cold atmospheric pressure plasma jet with substrates

Author:

Hansen LukaORCID,Goldberg Benjamin MORCID,Feng DavidORCID,Miles Richard B,Kersten HolgerORCID,Reuter StephanORCID

Abstract

Abstract The energy flux of a nanosecond pulsed cold atmospheric pressure (CAP) plasma jet in contact with a substrate surface was measured to improve the understanding of the correlation between energy flux, flow dynamics and applied electrical power. The flow pattern properties of the CAP jet were imaged using Rayleigh scattering showing a transition from laminar to turbulent flow at Reynolds number of 700, significantly smaller than the conventional critical Reynolds number of 2040. The energy flux to the surface was determined using a passive thermal probe as a substrate dummy. As expected, the energy flux decreases with increasing distance to the nozzle. Measurements of the floating potential of the probe revealed a strong positive charging (up to 165 V) attributed to ion flux originating mainly from Penning ionization by helium metastables. Negative biasing of the probe doubled the energy flux and showed a significantly increased ion contribution up to a nozzle distance of 6 mm to the surface. For positive biasing an increased contribution of electrons and negative ions was only found at 3 mm distance. The relevance of particle transport to the surface is shown by switching from laminar to turbulent flow resulting in a decreased energy flux. Furthermore, a linear correlation of energy flux and input power was found.

Funder

Fonds de Recherche du Québec - Santé

Deutscher Akademischer Austauschdienst

Alexander von Humboldt-Stiftung

National Aeronautics and Space Administration

Army Research Office

Canada First Research Excellence Fund

National Nuclear Security Administration

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3