Quantitative measurements of oxygen atom and negative ion densities in a low pressure oxygen plasma by cavity ringdown spectroscopy

Author:

Peverall RobertORCID,Rogers Samuel D AORCID,Ritchie Grant A DORCID

Abstract

Abstract In this paper we report measurements of the absolute concentration of ground state oxygen atoms produced in a low pressure (≤100 mTorr) inductively coupled oxygen plasma. These experiments have utilised cavity ringdown spectroscopy, allowing line of sight absorption to be measured on the optically forbidden 1D ← 3P transition around 630 nm. Both the translational temperature and the absolute concentrations of the two most populated spin–orbit levels (J = 1 and 2) have been determined as a function of plasma pressure at a fixed operating power of 300 W, allowing accurate determination of dissociation fraction; in all cases, the dissociation fraction is considerable, ≥10%, maximising at 15% for 20 mTorr. Time-resolved measurements of the rate of loss of the oxygen atoms when the plasma is extinguished have allowed the probability for wall-loss in the plasma chamber, γ, to be determined; in this case, for an aluminium surface, γ is determined to be ca. a few ×10−3, with the exact value depending on pressure. In addition, the O number density is shown to be an inverse function of pressure, showing a maximum of 1.6 × 1010 cm−3 at 10 mTorr, falling to 2 × 109 cm−3 at 100 mTorr, and characteristic of a discharge operating in the detachment regime. The measured number densities are interpreted using calculated electron energy distribution functions and yield physically reasonable values for the electron number density.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3