Abstract
Abstract
This article reports on experiments in a nonequilibrium plasma produced by nanosecond repetitively pulsed (NRP) spark discharges in water vapor at 450 K and atmospheric pressure. The objective is to determine the electron number density in the post-discharge, with spatial and temporal resolution, to gain a better understanding of the discharge development and chemical kinetics. Electron number densities were measured in water vapor from the broadenings and shifts of the H
α
and H
β
lines of the hydrogen Balmer series and of the atomic oxygen triplet at 777 nm. For an average reduced electric field of about 150 Td, high electron densities up to 3 × 1018 cm−3 are measured at the cathode, up to 5 × 1017 cm−3 at the anode, and up to 4 × 1016 cm−3 in the interelectrode gap. The high density near the electrodes is attributed to ionization enhancement and secondary electron emission due to the high electric field in the plasma sheath. In the middle of the inter-electrode gap, we show that the electron density mainly decays by electron attachment reactions. The dissociation fraction of water vapor is estimated to be around 2% in the middle of the gap.
Funder
Japan Society for the Promotion of Science
Agence Nationale de la Recherche
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献