The formation of O and H radicals in a pulsed discharge in atmospheric pressure helium with water vapour admixtures

Author:

Brisset AlexandraORCID,Bieniek MatthewORCID,Invernizzi LaurentORCID,Hasan MohammadORCID,Walsh JamesORCID,Niemi KariORCID,Wagenaars ErikORCID

Abstract

Abstract The spatio-temporal distribution of O and H radicals in a 90 ns pulsed discharge, generated in a pin–pin geometry with a 2.2 mm gap, in He + H2O (0.1% and 0.25%), is studied both experimentally and by 1D fluid modelling. The density of O and H radicals as well as the effective lifetimes of their excited states are measured using picosecond resolution two-photon absorption laser induced fluorescence. Good agreement between experiments and modelling is obtained for the species densities. The density of O and H is found to be homogenous along the discharge axis. Even though the high voltage pulse is 90 ns long, the density of O peaks only about 1 μs after the end of the current pulse, reaching 2 × 1016 cm−3 at 0.1% H2O. It then remains nearly constant over 10 μs before decaying. Modelling indicates that the electron temperature (Te) in the centre of the vessel geometry ranges from 6 to 4 eV during the peak of discharge current, and after 90 ns, drops below 0.5 eV in about 50 ns. Consequently, during the discharge (<100 ns), O is predominantly produced by direct dissociation of O2 by electron impact, and in the early afterglow (from 100 ns to 1 μs) O is produced by dissociative recombination of O2 +. The main loss mechanism of O is initially electron impact ionisation and once T e has dropped, it becomes mainly Penning ionisation with He2* and He* as well as three-body recombination with O+ and He. On time scales of 100–200 μs, O is mainly lost by radial diffusion. The production of H shows a similar behaviour, reaching 0.45 × 1016 cm−3 at 1 μs, due to direct dissociation of H2O by electron impact (<100 ns) followed by electron–ion recombination processes (from 200 ns to 1.5 us). H is dominantly lost through Penning ionisation with He* and He2* and by electron impact ionisation, and by charge exchange with O+. Increasing concentrations of water vapour, from 0.1% to 0.25%, have little effect on the nature of the processes of H formation but trigger a stronger initial production of O, which is not currently reproduced satisfactorily by the modelling. What emerges from this study is that the built up of O and H densities in pulsed discharges continues after electron-impact dissociation processes with additional afterglow processes, not least through the dissociative recombination of O2 + and H2 +.

Funder

Engineering and Physical Science Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3