Spectral investigations of low-temperature plasma induced in CO2 gas by nanosecond pulses of extreme ultraviolet (EUV)

Author:

Bartnik AORCID,Skrzeczanowski W,Wachulak P,Fok T,Węgrzyński Ł,Szczurek M,Fiedorowicz H

Abstract

Abstract In this work, low-temperature plasmas, induced in a gaseous CO2 by intense extreme ultraviolet (EUV) pulses were investigated with a purpose to determine their ionic/molecular composition and the resulting, potentially reactive species. Two laser-produced plasma EUV sources based on a xenon gas puff target were used to irradiate and ionize of the CO2 gas. The sources, driven by Nd:YAG lasers of different parameters, delivered EUV beams created using reflective, focusing collectors. The CO2-based, low-temperature plasmas induced using both systems, emitted radiation in a wide wavelength range, from vacuum ultraviolet (VUV) to visible light (VIS). The radiation was measured using spectrometers and a streak camera operating in these spectral ranges. In the VUV range, multiple emission lines corresponding to ionic and atomic species together with the CO molecular bands were acquired. Spectra from the UV–VIS range were mainly composed of the CO2 + molecular bands. Numerical simulations of the molecular spectra allowed us to estimate rotational and vibrational temperatures of the EUV induced plasmas. As could be expected, plasmas created in both experimental systems were characterized by different temperatures and intensity ratios of the ionic–atomic spectral lines. The spatio-temporal measurements performed using the streak camera indicated a few times longer lifetime of the EUV induced plasmas, compared to the driving, EUV pulses.

Funder

National Science Centre

LASERLAB

EUROPE

European Union

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3