Plasma catalysis: separating plasma and surface contributions for an Ar/N2/O2 atmospheric discharge interacting with a Pt catalyst

Author:

Hinshelwood MichaelORCID,Oehrlein Gottlieb SORCID

Abstract

Abstract Atmospheric pressure non-equilibrium plasmas can form nitrogen oxide (NO x ) compounds directly from nitrogen and oxygen without a catalyst, and at lower catalyst temperatures than would be possible without plasma. In this work, the oxidation of plasma-produced NO from an Ar/N2/O2 non-equilibrium atmospheric-pressure plasma-jet (APPJ) over a platinum-on-alumina powder catalyst was investigated with in-situ infrared spectroscopy. Products downstream of the catalyst bed were analyzed along with catalyst surface species. The catalyst was exposed to plasma at both constant temperature and a cyclic temperature ramp in order to study long-lasting and transient surface changes. Primary incident reactive species to the catalyst were assessed to be NO and O3. Pt-Al2O3 at 350 °C increased oxidation of NO relative to Al2O3 or an empty chamber. The surface state of Pt-Al2O3 evolves during plasma-effluent exposure and requires upwards of 20 min exposure for stabilization compared to Al2O3. Once stable surface conditions are achieved, thermal cycling reveals a repeatable hysteresis pattern in downstream products. At low temperature, oxygen and NO x accumulate on the catalyst surface and react at elevated temperatures to form NO2. Increasing plasma power and O2:N2 ratio increases the hysteresis of the heating relative to the cooling curves in the pattern of NO2 formation. The limitation on NO oxidation at high temperatures was assessed to be Pt-O which is depleted as the catalyst is heated. Once stored species have been depleted, NO oxidation rates are determined by incoming reactants. Two overlapping NO oxidation patterns are identified, one determined by surface reactants formed at low temperature, and the other by reactants arriving at the surface at high temperature. The plasma is responsible for providing the reactants to the catalyst surface, while the catalyst enables reaction at high temperature or storage at low temperature for subsequent reaction.

Funder

Fusion Energy Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3