Plasma power balance: methodology and investigations of microwave capillary discharges

Author:

Coquery F,Leroy OORCID,Minea TORCID,Stancu G DORCID

Abstract

Abstract Nowadays, where strong energy constraints are set by the environmental and economical context, the real power coupled in plasmas becomes a critical aspect particularly for applications where plasma technologies are facing competition. This issue is enhanced for atmospheric pressures micro-plasmas, where the local power density can be very high (e.g. 105 W cm−3) which implies fast heat exchanges. The precise knowledge of the power coupled to plasma is also a key for fundamental understanding of discharge properties. This is often used as an input parameter for plasma modeling and its inaccuracy can mitigate the predictive quality of plasma simulation tools. In the present paper the macroscopic power balance was established for continuous microwave (MW) plasmas generated in capillaries in argon gas flows. The macroscopic power budgets were performed based on measurements of microwave leak fluxes, heat fluxes (thermal radiation, convection, conduction), optical radiation and chemical powers. It was proven that the traditional power measurements at the MW generator would largely overestimate the real power coupled to plasmas, namely by at least a factor two. An important power fraction is found in the heat transfer through the MW launcher, the impedance mismatching being here better assessed. The proposed methodology, which is based on the physics of transport phenomena, can be employed for characterization of other (micro-) plasma sources.

Funder

Laboratoire Systèmes et Ingénierie de Paris-Saclay

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3