Effects of a radial variation of surface coefficients on plasma uniformity in capacitive RF discharges

Author:

Wang LiORCID,Hartmann PeterORCID,Donkó ZoltánORCID,Song Yuan-HongORCID,Schulze JulianORCID

Abstract

Abstract With the increasing demands toward large area plasma etching and deposition, the radial uniformity of capacitively coupled plasmas (CCPs) becomes one of the key factors that determine process performance in industrial applications. However, there is a variety of parasitic effects, e.g. electromagnetic and electrostatic edge effects, that typically lead to the formation of nonuniform radial plasma density profiles at various discharge conditions with a density peak appearing either at the center or near the edges of the electrodes. Moreover, in commercial CCPs different surface materials are in contact with the plasma at various positions as parts of boundary surfaces such as focus rings, masks, showerhead electrodes, wall and/or target materials. Via complex material specific plasma-surface interactions, the presence of such different surface materials affects plasma uniformity in a way that is typically not understood and, thus, not controlled. In this work, aided by 2d3v graphics processing unit accelerated particle-in-cell/Monte Carlo collision simulations, we study the effects of radial variations of electrode materials on the plasma via their different ion and electron induced secondary electron emission as well as electron reflection coefficients on the discharge characteristics. Based on such fundamental understanding we tailor the radial variation of boundary surface materials to improve plasma uniformity in low pressure CCPs. Such investigations are performed at different neutral gas pressures, where both center and edge high radial plasma density profiles form in the presence of radially uniform surface coefficients that resemble the presence of a single electrode material. It is demonstrated that by radially varying the surface coefficients at the grounded electrode, the radial plasma density profile can be finely adjusted and the plasma uniformity above the wafer placed at the powered electrode can be improved in both cases.

Funder

Deutsche Forschungsgemeinschaft

National Natural Science Foundation of China

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3