Three-dimensional tomographically reconstructed optical emission profiles of Hall thruster plasmas

Author:

Kim JinwooORCID,Lee DonghoORCID,Doh GuentaeORCID,Park SanghooORCID,Kim HolakORCID,Choe WonhoORCID

Abstract

Abstract A diagnostic system was developed for spectrally resolved, three-dimensional tomographic reconstruction of Hall thruster plasmas, and local intensity profiles of Xe I and Xe II emissions were reconstructed. In this diagnostic system, 28 virtual cameras were generated using a single, fixed charge-coupled device camera by rotating the Hall thruster to form a sufficient number of lines of sight. The Phillips–Tikhonov regularization algorithm was used to reconstruct local emission profiles from the line-integrated emission signals. The reconstruction performance was evaluated using both azimuthally symmetric and asymmetric synthetic phantom images including 5% Gaussian white noise, which resulted in a root-mean-square error of the reconstruction within an order of 10−3 even for a 1% difference in the azimuthal intensity distribution. Using the developed system, three-dimensional local profiles of Xe II emission (541.9 nm) from radiative decay of the excited state 5p4(3P2)6p2[3]°5/2 and Xe I emission (881.9 nm) from 5p5(23/2)6p2[5/2]3 were obtained, and two different shapes were found depending on the wavelength and the distance from the thruster exit plane. In particular, a stretched central jet structure was distinctively observed in the Xe II emission profile beyond 10 mm from the thruster exit, while gradual broadening was found in the Xe I emission. Approximately 10% azimuthal nonuniformities were observed in the local Xe I and Xe II intensity profiles in the near-plume region (<10 mm), which could not be quantitatively distinguished by analysis of the frontal photographic image. Three-dimensional Xe I and Xe II intensity profiles were also obtained in the plume region, and the differences in the structures of both emissions were visually confirmed.

Funder

Defense Acquisition Program Administration and Defense Industry Technology Center

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3