Simulation study on an atmospheric pressure plasma jet interacting with a single fiber: effects of the fiber’s permittivity

Author:

Kong Xianghao,Xue Shuang,Li Haoyi,Yang Weimin,Martynovich E F,Ning WenjunORCID,Wang RuixueORCID

Abstract

Abstract Polymer fiber surface modification by low temperature plasma has received much attention in recent years. The plasma kinetic behavior and reactive species distribution can be totally different with the existence of fiber. In this work, a 2D axisymmetric fluid model is established to study the interaction between an atmospheric pressure plasma jet and a single fiber with different relative permittivity (ε r = 1.5 and 80, respectively). Division of the ionization wave is observed when approaching the fiber, followed by full wrapping of the fiber surface. Afterward, the ionization wave travels across the fiber and continues to propagate forward. Significant effects induced by the variation of the fiber’s permittivity are observed. For the fiber with ε r = 1.5 the high electric field (EF) region shifts from the south pole (SP; closer to the jet tube) to the north pole (NP; opposite side to the SP), but the high EF region remains at the SP for the fiber with ε r = 80. This is due to the large potential difference on the surface of the fiber with ε r = 1.5. Furthermore, the time-averaged surface fluxes of the main ions (He+, N2 +, and O2 +) and excited species (Hes, N, and O) are analyzed. It is found that the surface fluxes of the fiber with ε r = 80 at the NP are significantly higher than that of the fiber with ε r = 1.5. Therefore, increasing the relative dielectric constant of fiber would increase the main ions and excited species surface fluxes at the NP.

Funder

Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3