Diagnostics and characterization of a novel multi gas layer RF atmospheric pressure plasma jet for polymer processing

Author:

Narimisa MehrnoushORCID,Onyshchenko Yuliia,Sremački IvanaORCID,Nikiforov Anton,Morent Rino,Geyter Nathalie De

Abstract

Abstract The quest to employ cold plasma sources at atmospheric pressure in polymer processing has emerged as a potent driving force behind their development. Atmospheric pressure operation of plasma jets provides potential cost reductions as well as easier handling and maintenance. In addition, their unique advantage of remote operation allows the substrate to be placed outside the source boundaries. This latter feature makes it easier to process complex three-dimensional objects and to integrate plasma jets into existing production lines. Although conventional atmospheric pressure plasma jet (APPJ) sources have undergone significant advancements in their design and construction, they have reached their technical and technological thresholds in several domains, thereby also impeding further enhancements in material processing applications. To cope with this issue, this work introduces a promising APPJ (named MPPJ3) working in a three co-axial gas layer geometry, incorporating the capability of aerosol and shield gas introduction leading to a configuration rich in reactive plasma species with controllable size and suitable temperature for polymer processing. A parametric study on the novel MPPJ3 device is carried out and plasma characteristics, such as reactive plasma species and temperatures, are determined by means of optical emission spectroscopy (OES), laser scattering, and infrared (IR) camera imaging whereas the fluid dynamics are analyzed using computational fluid dynamics (CFDs) and Schlieren imaging. The obtained promising results clearly show the flexibility and adaptability of the MPPJ3 device for polymer processing applications.

Funder

Ghent University

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Innovative Atmospheric Plasma Jets for Advanced Nanomaterial Processing;Journal of Research Updates in Polymer Science;2024-09-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3