Non-Maxwellian electron effects on the macroscopic response of a Hall thruster discharge from an axial–radial kinetic model

Author:

Marín-Cebrián AlbertoORCID,Bello-Benítez EnriqueORCID,Domínguez-Vázquez AdriánORCID,Ahedo EduardoORCID

Abstract

Abstract A 2D axial–radial particle-in-cell (PIC) model of a Hall thruster discharge has been developed to analyze (mainly) the fluid equations satisfied by the azimuthally-averaged slow dynamics of electrons. Their weak collisionality together with a strong interaction with the thruster walls lead to a non-Maxwellian velocity distribution function (VDF). Consequently, the resulting macroscopic response differs from a conventional collisional fluid. First, the gyrotropic (diagonal) part of the pressure tensor is anisotropic. Second, its gyroviscous part, although small, is relevant in the azimuthal momentum balance, where the dominant contributions are orders of magnitude lower than in the axial momentum balance. Third, the heat flux vector does not satisfy simple laws, although convective and conductive behaviors can be identified for the parallel and perpendicular components, respectively. And fourth, the electron wall interaction parameters can differ largely from the classical sheath theory, based on near Maxwellian VDF. Furthermore, these effects behave differently in the near-anode and near-exit regions of the channel. Still, the profiles of basic plasma magnitudes agree well with those of 1D axial fluid models. To facilitate the interpretation of the plasma response, a quasiplanar geometry, a purely-radial magnetic field, and a simple empirical model of cross-field transport were used; but realistic configurations and a more elaborate anomalous diffusion formulation can be incorporated. Computational time was controlled by using an augmented vacuum permittivity and a stationary depletion law for neutrals.

Funder

Agencia Estatal de Investigación

H2020 European Research Council

Ministerio de Ciencia e Innovación

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3