On the nature of droplet production in DC glows with a liquid anode: mechanisms and potential applications

Author:

Yang ZimuORCID,Kovach YaoORCID,Wang ZhehuiORCID,Foster JohnORCID

Abstract

Abstract The interactions between plasma and liquid solutions give rise to the formation of chemically reactive species useful for many applications, but the mass transport in the interfacial region is usually limited and not fully understood. In this work, we report on the observation and explanation of droplet ejection at the plasma–liquid interface of a one-atmosphere glow discharge with the liquid anode. The impact of droplets emission on plasma properties is also analyzed by spectroscopy. The process, which is an efficient mass and charge transport mechanism, apparently occurs during discharge operation and thus constitutes a feedback vehicle between the discharge and the liquid. Distinctive from the well-known Talyor cone droplets associated with liquid cathodes, the observed droplets originate from the bubbles due to electrolysis and solvated air which does not require strong electric field at liquid surface. Instead, the droplets are ejected by bubble cavity rupture at the plasma–liquid interface and their size, initial speed are strongly dependent on the gravity, inertia and capillarity. The droplets emerge near the plasma attachment and are subsequently vaporized, emitting intense UV and visible light, which originated from excited OH radicals and sodium derived from the liquid electrolyte. Spectroscopy analysis confirmed that the bursting droplets generally reduce the gas temperature while their effects on electron density depend on the composition of the liquid anode. Results also show that droplets from NaCl solution increase the plasma electron density due to the lower ionization potential of sodium. These findings reveal a new mechanism for discharge maintenance and mass transport as well as suggest a simple approach to dispersing plasma-activated liquid into the gas phase and thus enhancing plasma–liquid interaction.

Funder

National Science Foundation

US Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3