Interfacial current distribution between helium plasma jet and water solution

Author:

Wang SuiORCID,Liu DingxinORCID,Wang Zifeng,Liu Yifan,Li Qiaosong,Wang Xiaohua,Kong Michael G,Rong Mingzhe

Abstract

Abstract The plasma–liquid interaction holds great importance for a number of emerging applications such as plasma biomedicine, yet a main fundamental question remains about the nature of the physiochemical processes occurring at the plasma–liquid interface. In this paper, the interfacial current distribution between helium plasma jet and water solution was measured for the first time by means of the splitting electrode method, which was borrowed from the field of arc plasma. For a plasma plume in continuous mode, it was found that the mean absolute current distribution at the plasma–liquid interface typically had an annular shape. This shape could be affected by regulating the air doping from the surrounding atmosphere, the gas flow rate, the applied voltage and the conductivity of the water solution. However, only the air doping fraction and the water conductivity could fundamentally change the interfacial current distribution from the annular shape to the central maximum shape. It was deduced that a certain amount of ambient air doping (mainly N2 and O2) and a low conductivity (typically <300 μS cm−1) of the treated water were essential for the formation of the annular current distribution at the plasma–liquid interface.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3