Abstract
Abstract
Stark polarization spectroscopy is used to investigate the temporal evolution of the electric field distribution in the cathode region of a nanosecond pulsed discharge in helium at 120 Torr. The measurements are performed on the He I transition at 492.19 nm, during the early stages of the discharge formation. The experimental results are compared with the predictions of a 1D fluid model. Time-resolved ICCD images show that the discharge develops as a diffuse, cathode-directed ionization wave with a Townsend-like feature before transitioning into a glow-like structure. Near anode instabilities characterized by filament formation were observed near the high voltage electrode. Within 30 ns, a reduction of the sheath thickness to about 250 μm is observed, coinciding with a gradual increase of the discharge current and proportional increase in electric field at the cathode. The cathode electric field corresponding to this sheath with a thickness of 250 μm is about 40 kV cm−1. A subsequent steep increase of the discharge current leads to a further reduction of the sheath width. The electric field evolution as obtained by the fluid model is in excellent agreement with the measurements and shows that an enhanced ionization near the cathode is causing the space charge formation responsible for the increase in electric field.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献