Experimental study on the discharge characteristics of an air rotating gliding arc

Author:

Sun Su-RongORCID,Chen Fei,Zheng Yu-HangORCID,Wang Chao,Wang Hai-XingORCID

Abstract

Abstract In this study, the discharge characteristics of an air rotating gliding arc (RGA) are investigated by synchronous measurements of a digital oscilloscope and a high-speed camera, and the emission spectrum measurement. The discharge evolution in one complete motion cycle exhibits a ‘breakdown-elongation-extinction’ process accompanied by a jump phenomenon of the arc root and a back-breakdown phenomenon. The discharge evolves from the unstable breakdown mode (U-B), to the transition mode and finally to the stable gliding mode (S-G) by increasing the input voltage or decreasing the tangential and axial gas flow rates. The U-B mode at an input voltage of 120 V is featured by the large reduced electric field and high electron temperature of 1.90 eV, but the arc length and existence time are very short. The S-G mode at an input voltage of 270 V has a relatively low breakdown frequency of 0.33 kHz and an average breakdown current of 1.31 A, implying that the arc steadily glides and rotates along the spiral electrode. The average electron temperature is 0.64 eV in the S-G mode, while the arc length and existence time are longer. The rotational and vibrational temperatures of the N 2 ( C 3 u ) state are respectively measured at 2200 K and 4400 K in the U-B mode, and in the S-G mode are 2600 K and 4820 K. From the evolution of emission intensities of measured excited species, it is found that the NO γ band emission intensity generally rises from the U-B mode to the S-G mode since the gas temperature and arc existence time rise, indicating that the S-G mode may be beneficial for the vibrationally promoted Zeldovich reactions. This study could deepen the understanding of arc characteristics in air RGA for selecting a suitable mode to achieve better plasma performance in practical applications.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3