Investigation of conditions necessary for inception of positive corona in air based on differential formulation of photoionization

Author:

Pasko Victor PORCID,Janalizadeh RezaORCID,Jansky JaroslavORCID

Abstract

Abstract Sharp point electrodes generate significant electric field enhancements where electron impact ionization leads to the formation of electron avalanches that are seeded by photoionization. Photoionization of molecular oxygen due to extreme ultraviolet emissions from molecular nitrogen is a fundamental process in the inception of a positive corona in air. In a positive corona system, the avalanche of electrons in the bulk of the discharge volume is initiated by a specific distribution of photoionization far away from the region of maximum electron density near the electrode where these photons are emitted. Here, we present a new approach to finding the inception conditions for a positive corona, which is based on a differential formulation of the photoionization problem. The proposed iterative solution considers the same inception problem that has been solved in the existing literature by using either an integral approach to photoionization or a differential formulation of photoionization and considering the inception problem as a boundary-value eigenvalue problem. The results are validated by comparisons with previous integral formulations and time dynamic plasma fluid solutions in planar and spherical geometries. The results illustrate ideas advanced in Kaptzov (1950 Elektricheskiye Yavleniya v Gazakh i Vacuume p 610) providing a physically transparent connection between an effective secondary electron emission coefficient due to volume photoionization in a positive corona system and the secondary electron emission in conventional Townsend discharge theory. The results also demonstrate the significance of boundary conditions for accurate corona solutions that are based on a differential formulation of photoionization.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3