The transport dynamics of tens of micrometer-sized water droplets in RF atmospheric pressure glow discharges

Author:

Nayak GauravORCID,Meyer Mackenzie,Oinuma Gaku,J Kushner MarkORCID,J Bruggeman PeterORCID

Abstract

Abstract Charging of particles having diameters of tens of microns has been extensively studied at atmospheric pressure in the context of, for example, electrostatic precipitators where the focus was on unipolar charging. The ambipolar charging of particles in atmospheric pressure plasmas, and of droplets in particular, has received less attention. The plasma activation of droplets is of interest for water purification, fertilizer production and materials synthesis, all of which depend on the transport of the droplets through the plasma, which in turn depends on their charging. In this paper, we report on the transport dynamics of water droplets, tens of microns in diameter, carried by the gas flow through an atmospheric pressure radiofrequency glow discharge sustained in helium. The droplets pass through the plasma with minimal evaporation and without reaching the Rayleigh limit. The droplet trajectory in the presence and absence of the plasma provides insights on the forces acting on the droplet. The measurements were analyzed using results from a three-dimensional fluid model and a two-dimensional plasma hydrodynamics model. We found that the transport dynamics as the droplet enters and leaves the plasma are due to differential charging of the droplet in the plasma gradients of the bounding sheaths to the plasma.

Funder

Fusion Energy Sciences

National Science Foundation

Army Research Office

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3