Application of the catalytic probe method for measuring the concentration of oxygen atoms in Ar/O2 plasma of a low-pressure arc

Author:

Kamenetskikh AlexanderORCID,Gavrilov Nikolay,Krivoshapko Sergey,Tretnikov Petr

Abstract

Abstract The monitoring of the degree of oxygen dissociation in the discharge plasma is critical for various plasma applications associated with the etching and oxidation of surfaces or the reactive deposition of oxide coatings. The use of existing measurement techniques is limited owing to their complexity, significant error rate, or application conditions. This study deals with the development of a catalytic probe method for measuring the degree of oxygen dissociation in dense arc discharge plasma. A method for measuring and processing the experimental results is presented, which allows the determination of the thermal contribution of the heterogeneous recombination of oxygen atoms at a high total heating power of the catalytic probe by particle streams and plasma radiation. The atomic oxygen concentration was measured in low-pressure arc plasma with a self-heating hollow cathode in an Ar/O2 mixture with changes in the discharge current and oxygen partial pressure over a wide range of 30–70 A and 0.2–0.6 Pa, respectively. It has been demonstrated that the maximum degree of oxygen dissociation (up to 25% of the O2 content) is achieved at the maximum discharge current and is practically independent of the oxygen flow, whereas the highest concentration of atomic oxygen is achieved when the maximum current and O2 flow values are combined. This conclusion is important for technologies based on plasma-chemical processes in high-current discharges.

Funder

Russian Foundation for Basic Research

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3