Study of temporal dissociation and atomic excitation rates in a flowing N2 DC discharge and post-discharge

Author:

Levaton JORCID,Klein A N,Amorim JORCID,Severo J H FORCID

Abstract

Abstract In this work, we experimentally and theoretically study mechanisms of molecular dissociation and atomic excitation occurring in a flowing nitrogen DC discharge and its post-discharge. A specific discharge experimental condition for the pink afterglow plasma occurrence in the post-discharge tube is analyzed. We employ optical emission spectroscopy (OES) and Langmuir probes to measure the reduced electric field (E/N), electron density (n e), gas temperature (T g) and N2(X1Σ+ g) vibrational temperature (T v) in the positive column. OES was also employed in the post-discharge for measurements of relative densities of N(4S) and N(2D) atoms in the pink afterglow. Two well-established numerical kinetic models, one for the positive column and another one for the post-discharge, were used to calculate the rates of molecular dissociation and atomic excitation as a function of gas residence time in the positive column and also in the nitrogen post-discharge. We analyzed the role of 13 molecular dissociation mechanisms, and 8 atomic excitation mechanisms in the positive column and pink afterglow. Results demonstrate that the positive column dissociation processes are dominated by the direct electron impact mechanism in the earlier discharge gas residence times and that, for longer times, reactions between electronically excited states and N2(X1Σ+ g, v) vibrational states become the dominant dissociation mechanisms. It is also observed that dissociation processes occurring in the pink afterglow present relevant rates as compared to the same processes occurring in the positive column, demonstrating the high effectiveness of such processes in the post-discharge. The N(2D) and N(2P) excitation mechanisms are also examined. We observe that molecular dissociation and atomic excitation mechanisms strongly depend on the N2(X1Σ+ g) vibrational distribution function of the discharge and post-discharge.

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3