Characterization of an atmospheric pressure plasma jet producing the auroral transition O(1S) to O(1D)

Author:

Jaiswal SORCID,Aguirre E M,van der Gaag TORCID

Abstract

Abstract We present a detailed characterization of an atmospheric pressure plasma jet that produces the metastable oxygen states O(1S) and O ( 1 D) with emission of the ‘auroral’ green line. The device used 99.999 % pure argon as a working gas for the plasma generation. Optical emission spectroscopy was used to understand the active species present in the plasma jet and to infer the mechanism of O(1S) creation and destruction. The continuum spectrum was used in conjunction with a method based on machine learning for determining the arbitrary electron probability distribution function. Discharge and plasma properties were estimated from Lissajous plots and using calculations with the BOLSIG+ software. The metastable oxygen forms for all operating parameters of the plasma jet system in a linear electrode configuration. The camera images provided information of the overall plasma jet behavior as parameters were altered. While the metastable oxygen was produced for every iteration, the plasma jet behavior changed considerably when the powered and grounded electrodes are switched. Small admixtures of oxygen and nitrogen were introduced in the plasma jet to understand the kinetic processes of metastable oxygen destruction and the 557.7 nm auroral line. This behavior has implications for plasma reactive chemistry in fundamental areas such as auroral physics as well as technological applications of plasmas.

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3