Fast species ranking for iterative species-oriented skeletal reduction of chemistry sets

Author:

Hanicinec MartinORCID,Mohr Sebastian,Tennyson JonathanORCID

Abstract

Abstract A fast algorithm is developed for ranking the species in a chemistry set according to their importance to the modeled densities of user-specified species of interest. The species ranking can be constructed for any set of user-specified plasma conditions, but here we focus predominantly on low-temperature plasmas, with gas temperatures between 300 and 1500 K covering the typical range of ICP and CCP plasma sources. This ranking scheme can be used to acquire insight into complex chemistry sets for modeling plasma phenomena or for a species-oriented reduction of the given chemistry set. The species-ranking method presented is based on a graph-theoretical representation of the detailed chemistry set and establishing indirect asymmetric coupling coefficients between pairs of species by the means of widely used graph search algorithms. Several alternative species-ranking schemes are proposed, all building on the theory behind different flavors of the directed relation graph method. The best-performing ranking method is identified statistically, by performing and evaluating a species-oriented iterative skeletal reduction on six, previously available, test chemistry sets (including O2–He and N2–H2) with varying plasma conditions. The species-ranking method presented leads to reductions of between 10 and 75% in the number of species compared to the original detailed chemistry set, depending on the specific test chemistry set and plasma conditions.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 2022 Review of Data-Driven Plasma Science;IEEE Transactions on Plasma Science;2023-07

2. A regression model for plasma reaction kinetics;Journal of Physics D: Applied Physics;2023-06-13

3. The 2021 release of the Quantemol database (QDB) of plasma chemistries and reactions;Plasma Sources Science and Technology;2022-09-01

4. Targeted Cross-Section Calculations for Plasma Simulations;Atoms;2021-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3