Abstract
Abstract
We simulate and characterize positive streamers in ambient air in homogeneous background electric fields from 4.5 to 26 kV cm−1 in a 4 cm gap. They can accelerate or decelerate depending on the background electric field. Many experiments have shown that a streamer keeps propagating in a stable manner in the so-called stability field of 4.5 to 5 kV cm−1. Our fluid streamer simulations in STP air show that: (1) in a homogeneous field larger than 4.675 kV cm−1, a single streamer accelerates, and in a lower field, it decelerates and eventually stagnates with a small radius and very high field enhancement. (2) In a field of 4.675 kV cm−1, the streamer head propagates with an approximately constant velocity of 6.7 × 104 m s−1 and an optical radius of 55 μm over distances of several centimeters as a stable coherent structure. These values for the radius and velocity agree well with measurements of so-called minimal streamers. (3) Behind the uniformly translating streamer head, the channel conductivity decreases due to electron attachment and recombination, and the electric field returns to its background value about 1 cm behind the head. The propagation behavior of the solitary streamer agrees with the original definition of the stability field, which is the homogeneous field in which a streamer can propagate with a constant speed and shape.
Funder
H2020 Marie Skłodowska-Curie Actions
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献