A computationally assisted technique to measure material-specific surface coefficients in capacitively coupled plasmas based on characteristics of the ion flux-energy distribution function

Author:

Schulze CORCID,Donkó ZORCID,Benedikt JORCID

Abstract

Abstract We present a new method for the determination of surface coefficients, more specifically the effective ion-induced secondary electron yield, γ eff, and the effective elastic electron reflection coefficient, r eff, by means of a synergistic combination of energy-selective mass spectrometry measurements and numerical particle-in-cell/Monte Carlo collisions simulations of the ion flux-energy distribution function (IEDF) in a symmetric capacitively coupled plasma (CCP). In particular, we analyze the bimodal peak structure of the IEDF, which is caused by ions crossing the sheath without collisions. The position and width of this structure on the energy scale are defined by the time-averaged sheath potential and the ion transit time through the sheath, respectively. We find that both characteristics are differently influenced by γ eff and r eff. The ion-induced secondary electrons are accelerated in the large sheath potential and mainly influence the plasma density, sheath width and, consequently, the ion transit time and in this way the bimodal peak separation. Electron reflection from the electrodes acts mainly at times of sheath collapse, where low energy electrons can reach the surfaces. Their contribution to the plasma density increase is small, however, their longer residence time in the vicinity of the electrodes modifies the space charge density and the potential gradient. Additionally, the charge balance at the electrode requires an incident electron flux that is correlated to the flux of emitted ion induced secondary electrons and reflected electrons, which is realized by a change of the electron repelling sheath voltage. As a consequence, the electron reflection coefficient mainly influences the sheath potential and, hence, the position of the bimodal peak structure. These effects allow the simultaneous in situ determination of both surface parameters. The parameter values determined for stainless steel and Al2O3 surfaces are in good agreement with literature data. Our method opens a straightforward way of obtaining γ eff and r eff under realistic plasma conditions.

Funder

Deutsche Forschungsgemeinschaft

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3