Electromagnetic particle-in-cell simulation on self-induced magnetic field by hollow cathode discharge

Author:

Wang Baisheng,Meng Tianhang,Zhao YinjianORCID,Ning Zhongxi,Liu Hui,Yu Daren

Abstract

Abstract Strong electron current density exits in hollow cathodes, but former numerical studies tend to only consider its electrostatic aspect and ignore its electromagnetic (EM) nature, due to the complex physics and the large computational cost. Among all the EM effects in hollow cathodes, the azimuthal magnetic field induced by the electron current plays the key role. In this work, for the first time fully kinetic particle-in-cell simulations are conducted to study the induced magnetic field and relevant EM effects in hollow cathodes. It is found that the electron–ion instability could cause a significant drop of the induced magnetic field in a fraction of nanosecond. When the magnitude of the induced magnetic field is strong, its perturbation would disturb the electron current density, and these mechanisms can only be captured by EM simulations.

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3