The spatial distribution of hydrogen and oxygen atoms in a cold atmospheric pressure plasma jet

Author:

Klose S-JORCID,Ellis JORCID,Riedel FORCID,Schröter SORCID,Niemi KORCID,Semenov I LORCID,Weltmann K-DORCID,Gans TORCID,O’Connell DORCID,van Helden J HORCID

Abstract

Abstract Cold atmospheric pressure plasma jets (CAPJs) are an emerging technology for the localised treatment of heat sensitive surfaces. Adding humidity to the CAPJ’s feed gas yields an effective production of highly reactive intermediate species, such as hydrogen atoms, oxygen atoms, and hydroxyl radicals, among others, which are key species for biomedical applications. This study focusses on the effluent of the CAPJ kINPen, which was operated with argon feed gas and a humidity admixture of 3000 ppm, while a gas curtain was used to limit the diffusion of ambient air into the effluent. The axial and radial density distribution of O and H atoms is measured by means of picosecond two-photon absorption laser induced fluorescence spectroscopy (ps-TALIF). A maximum O atom density of (3.8 ± 0.7) × 1015 cm−3 and a maximum H atom density of (3.5 ± 0.7) × 1015 cm−3 are found at the nozzle of the plasma jet. The experimental results are compared to a two-dimensional reacting flow model that is coupled with a local zero-dimensional plasma chemical model. With this model, the main H and O atom production mechanisms are determined to be the dissociation of H2O and O2 in the plasma zone of the plasma jet. The latter indicates, that a significant amount of oxygen (1%) was present inside the device. The reaction of OH with O atoms represents the main consumption pathway for O atoms and is at the same time a significant production pathway for H atoms. The main consumption of H atoms is through a three-body reaction including O2 to form HO2, which consumes more H and O atoms to form OH. It is pointed out, that most of the species are produced in the plasma zone, and that O and H atoms, OH and HO2 radicals, and O2 and H2O molecules are strongly connected.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3