PISCES-RF: a liquid-cooled high-power steady-state helicon plasma device

Author:

Thakur Saikat ChakrabortyORCID,Simmonds Michael JORCID,Caneses Juan FORCID,Chang FengjenORCID,Hollmann Eric M,Doerner Russell P,Goulding Richard,Lumsdaine Arnold,Rapp JuergenORCID,Tynan George R

Abstract

Abstract Radio-frequency (RF) driven helicon plasma sources can produce relatively high-density plasmas (n > 1019 m−3) at relatively moderate powers (<2 kW) in argon. However, to produce similar high-density plasmas for fusion relevant gases such as hydrogen (H), deuterium (D) and helium (He), much higher RF powers are needed. For very high RF powers, thermal issues of the RF-transparent dielectric window, used in the RF source design, limit the plasma operation timescales. To mitigate this constraint, we have designed, built and tested a novel helicon plasma source assembly with a fully liquid-cooled RF-transparent window which allows steady state operations at high power (up to 20 kW) and successfully produces high-density plasma with both argon and H. Deionized (DI) water, flowing between two concentric dielectric RF windows, is used as the coolant. We show that a full azimuthal blanket of DI water does not prevent high-density plasma production. From calorimetry on the DI water, we measure the net heat removed by the coolant at steady state conditions. Using infra-red imaging, we calculate the constant plasma heat deposition and measure the final steady state temperature distribution patterns on the inner surface of the ceramic layer. The heat deposition pattern follows the helical shape of the antenna. We also show the consistency between the heat absorbed by the DI water, as measured by calorimetry, and the total heat due to the combined effect of the plasma heating and the absorbed RF. These results are being used to answer critical engineering questions for the 200 kW RF device materials plasma exposure experiment being designed at the Oak Ridge National Laboratory as a next generation plasma material interaction device.

Funder

Office of Fusion Energy Sciences, US Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3