Analysis of secondary emission mechanism in electron avalanches propagating in cylindrical nanoruptures in liquid water

Author:

Bonaventura ZdeněkORCID,Bílek PetrORCID,Tungli JánORCID,Šimek MilanORCID

Abstract

Abstract Recently, a bouncing-like mechanism for electron multiplication inside long nano-ruptures during the early stages of nanosecond discharge in liquid water has been proposed in (Bonaventura 2021 Plasma Sources Sci. Technol. 30 065023). This mechanism leads to the formation of electron avalanches within nano-ruptures caused by strong electrostrictive forces. The avalanche propagation is a self-sustaining process: the electrons emitted from the water surface to the cavity support the propagation of the avalanche and the avalanche itself is a source of the parent electrons impinging on the surface of the nano-rupture and causing secondary emission. We analyze the process of the electron secondary emission directly from the simulation results of the electron avalanche propagation. This allow us to perform an in situ study of the secondary emission and related physical processes. We present the results of an extensive parametric study performed using the state-of-the-art simulation toolkit Geant4-DNA for modeling electron-liquid water interactions. It is shown that the typical lifetime of an electron in an avalanche is about 0.1 to 0.2 picoseconds and that the electron experiences about 4 bounces before ending up in liquid water. In addition, it is shown that the secondary electrons are formed in a layer adjacent to the nano-rupture surface that is only a few nanometres thin. The secondary electron velocity distribution at the moment of the electron birth, the velocity space of electrons (re-)emitted from the water, and the velocity space of electrons at the moment of their impact to the cavity surface are analyzed in detail. Electron bouncing and secondary electron generation efficiency are quantified using the secondary emission coefficient, the secondary emission efficiency, and the effective energy consumed to produce new electrons.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Grantová Agentura České Republiky

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3