On working gas rarefaction in high power impulse magnetron sputtering

Author:

Barynova Kateryna,Rudolph MartinORCID,Babu Swetha SureshORCID,Fischer JoelORCID,Lundin DanielORCID,Raadu Michael A.,Brenning Nils,Gudmundsson Jon TomasORCID

Abstract

Abstract The ionization region model (IRM) is applied to explore working gas rarefaction in high power impulse magnetron sputtering discharges operated with graphite, aluminum, copper, titanium, zirconium, and tungsten targets. For all cases the working gas rarefaction is found to be significant, the degree of working gas rarefaction reaches values of up to 83 %. The various contributions to working gas rarefaction, including electron impact ionization, kick-out by the sputtered species or hot argon atoms, and diffusion, are evaluated and compared for the different target materials, and over a range of discharge current densities. The relative importance of the various processes varies between different target materials. In the case of a graphite target with argon as the working gas at 1 Pa, electron impact ionization (by both primary and secondary electrons) is the dominating contributor to working gas rarefaction, with over 90 % contribution, while the contribution of sputter wind kick-out is small < 10 %. In the case of copper and tungsten targets, the kick-out dominates, with up to ∼60 % contribution at 1 Pa. For metallic targets the kick-out is mainly due to metal atoms sputtered from the target, while for the graphite target the small kick-out contribution is mainly due to kick-out by hot argon atoms and to a smaller extent by carbon atoms. The main factors determining the relative contribution of the kick-out by the sputtered species to working gas rarefaction appear to be the sputter yield and the working gas pressure.

Funder

University of Iceland Research Fund

Icelandic Research Fund

Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High power impulse magnetron sputtering of a zirconium target;Journal of Vacuum Science & Technology A;2024-06-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3