Polarization properties of E-FISH signals and optimization of simultaneous measurement of electric field vectors

Author:

Zheng XinleiORCID,Zhao ZhengORCID,Zheng Haotian,Huang ZongzeORCID,Sun Zihan,Li Jiangtao

Abstract

Abstract Electric field measurements based on the electric field induced second harmonic (E-FISH) method have been employed in a wide range of studies. Most studies typically measure two components of the electric field separately. Although there have been proposals for the simultaneous measurement of electric field vectors, the imbalance of the two corresponding E-FISH signals has limited its application. Furthermore, the relationship between the polarization of the E-FISH signal and the direction of external electric field remains unclear. In this paper, the general expressions for the polarization and power of both components of E-FISH signals are derived, assuming arbitrary probe beam polarization and external electric field direction. The theoretical results indicate that the polarization of E-FISH signals varies along the interaction length. The final signal’s polarization is elliptically polarized for arbitrary electric field distribution and is correlated with the polarization of the probe beam, which deviates from what is commonly assumed to be consistent with the external electric field. If the polarization of the probe beam is not parallel to the axes, the power of each signal component is determined by both components of the external electric field, which lays the foundation for the simultaneous measurement of electric field vectors. This theoretical prediction is subsequently validated by experimental results. Finally, the power maps suggest that the optimal polarization angle of the probe beam is 45° or 135° to achieve a balanced signal power when measuring an unknown electric field vector. Both components of the electric field can be simultaneously obtained according to the theoretical relationship.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3