Nanosecond plasmas in water: ignition, cavitation and plasma parameters

Author:

Grosse KORCID,Held JORCID,Kai M,von Keudell AORCID

Abstract

Abstract Nanosecond plasmas in liquids play an important role in the field of decontamination, electrolysis or plasma medicine. The understanding of these very dynamic plasmas requires information about the temporal variation of species densities and temperatures. This is analyzed by monitoring nanosecond pulsed plasmas that are generated by high voltages (HVs) between 14 and 26 kV and pulse lengths of 10 ns applied to a tungsten tip with 50 μm diameter immersed in water. Ignition of the plasma causes the formation of a cavitation bubble that is monitored by shadowgraphy to measure the dynamic of the created bubble and the sound speed of the emitted acoustic waves surrounding this tungsten tip. The temporal evolution of the bubble size is compared with cavitation theory yielding good agreement for an initial bubble radius of 25 μm with an initial pressure of 5 × 108 Pa at a temperature of 1200 K for a HV of 20 kV. This yields an initial energy in the range of a few 10−5 J that varies with the applied HV. The dissipated energy by the plasma drives the adiabatic expansion of water vapor inside the bubble from its initial supercritical state to a low pressure, low temperature state at maximum bubble expansion reaching values of 103 Pa and 50 K, respectively. These predictions from cavitation theory are corroborated by optical emission spectroscopy. After igniting the nanosecond plasma, the electrical power oscillates in the feed line between HV pulser and plasma chamber with a ring down time of the order of 60 ns. These reflected pulses re-ignite a plasma inside the expanding bubble periodically. Broadband emission due to recombination and Bremsstrahlung becomes visible within the first 30 ns. At later times, line emission dominates. Stark broadening of the spectral lines of H α (656 nm) and OI (777 nm) is evaluated to determine both the electron density and the electron temperature in these re-ignited plasmas.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3