Plasma plume simulation of an atomic oxygen-fed ion thruster in very-low-earth-orbit

Author:

Moon GeonwoongORCID,Choe WonhoORCID,Jun EunjiORCID

Abstract

Abstract The plasma plume flow of an atomic oxygen-fed (AO-fed) ion thruster is numerically investigated as a simplification of the atmosphere-breathing electric propulsion (ABEP). A predictive analysis is conducted focusing on the ion backflow phenomenon and plume-background interaction in very-low-earth-orbit (VLEO). The computational framework employs two sequentially integrated numerical methods: a zero-dimensional (0-D) analytical model for the radio-frequency ion thruster and a hybrid method of the particle-in-cell (PIC) and direct simulation Monte Carlo (DSMC) techniques. The 0-D analytic model is employed for the prediction of exhaust conditions, while the hybrid PIC-DSMC method adopts these predictions to conduct the plasma plume simulations. A generalized collision cross-section model is introduced to enable consistent kinetic simulations for both AO and xenon propellants in VLEO atmosphere. The plasma plume simulations are conducted in an axisymmetric domain, including a cylindrical satellite body to consider wake flow. The exhaust ions exhibit diffusive transport transverse to the ion beam direction, implying the ion backflow. The backflowing ion current density can be increased in AO-fed thrusters, which require a high propellant flow rate to achieve a practical thrust. The AO-fed ion thruster shows a more active interaction between its plasma plume and the VLEO atmosphere compared to conventional xenon-based thrusters. The intensified plume-background interaction modifies the backflowing ion current density and the kinetic energy of individual ions, factors related to the spacecraft’s surface contamination.

Funder

National Supercomputing Center, Korea Institute of Science and Technology Information

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3