Modeling inductive radio frequency coupling in powerful negative hydrogen ion sources: validating a self-consistent fluid model

Author:

Zielke DORCID,Briefi SORCID,Lishev SORCID,Fantz UORCID

Abstract

Abstract Radio frequency (RF) negative hydrogen ion sources utilized in fusion and for accelerators use inductively coupled plasmas, which are operated at a low driving frequency, high power densities and gas pressures in the order of 1 MHz, 10 W cm−3 and 1 Pa, respectively. In this work a numerical fluid model is developed for a self-consistent description of the RF power coupling in these discharges. After validating the RF power coupling mechanism, such a model is a valuable tool for the optimization of RF power coupling and hence can help to increase the efficiency and reliability of RF ion sources. The model validation is achieved using measurements from the ITER RF prototype ion source. Steady state numerical solutions are obtained for the first time, where all modeled trends fit well. Remaining systematic quantitative differences could be caused by 3D effects such as highly non-uniform magnetic fields that cannot be captured in the current model formulation, which is 2D cylindrically symmetric. The coupling between the RF fields and the electrons is realized in the electron momentum transport equation, where approximations consistent with the operating regime of RF ion sources are applied. Here large magnetic RF fields lead to a plasma compression by the nonlinear RF Lorentz force. Using a local approximation for the electron viscosity, it is found that increased diffusion of the RF current density mitigates the compression. Navier–Stokes equations for the neutral atoms and molecules are used to capture neutral depletion. In this way it is shown that at high powers neutral depletion has a large impact on the power coupling via the viscosity of the electrons. The application of the self-consistent model for optimization of the RF power coupling will be described in a forthcoming paper.

Funder

H2020 Euratom

Publisher

IOP Publishing

Subject

Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3