Abstract
Abstract
We apply particle based kinetic simulations to explore the characteristics of a low-pressure gas discharge driven by high-voltage (∼kV) pulses with alternating polarity, with a duty cycle of ≈ 1% and a repetition rate of 5 kHz. The computations allow tracing the spatio-temporal development of several discharge characteristics, the potential and electric field distributions, charged particle densities and fluxes, the mean ion energy at the electrode surfaces, etc. As such discharges have important surface processing applications, e.g. in the treatment of artificial bones, we analyse the time-dependence of the flux and the mean energy of the ions reaching the electrode surfaces, which can be both conducting and dielectric. Our investigations are conducted for argon buffer gas in the 40–140 Pa pressure range, for 1–5 cm electrode gaps and voltage pulse amplitudes ranging between 600 V and 1200 V.
Funder
Czech Science Foundation
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Ministry of Research, Technology, and Higher Education of Indonesia
Ministry of Education, Youth and Sports of the Czech Republic
Japan Society for the Promotion of Science
Osaka University
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献