Abstract
Abstract
Solid-state batteries (SSBs) with alkali metal anodes hold great promise as energetically dense and safe alternatives to conventional Li-ion cells. Whilst, in principle, SSBs have the additional advantage of offering virtually unlimited plating current densities, fast charges have so far only been achieved through sophisticated interface engineering strategies. With a combination of surface sensitive analysis, we reveal that such sophisticated engineering is not necessary in NaSICON solid electrolytes (Na3.4Zr2Si2.4P0.6O12) since optimised performances can be achieved by simple thermal treatments that allow the thermodynamic stabilization of a nanometric Na3PO4 protective surface layer. The optimized surface chemistry leads to stabilized Na|NZSP interfaces with exceptionally low interface resistances (down to 0.1 Ω cm2 at room temperature) and high tolerance to large plating current densities (up to 10 mA cm−2) even for extended cycling periods of 30 min (corresponding to an areal capacity 5 mAh cm−2). The created Na|NZSP interfaces show great stability with increment of only up to 5 Ω cm2 after four months of cell assembly.
Funder
Shell
European Commission
Engineering and Physical Sciences Research Council
Subject
Materials Chemistry,General Energy,Materials Science (miscellaneous)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献