Manipulating ionic conductivity through chemical modifications in solid-state electrolytes prepared with binderless laser powder bed fusion processing

Author:

Acord Katherine AORCID,Dupuy Alexander D,Chen Qian Nataly,Schoenung Julie MORCID

Abstract

Abstract Additive manufacturing of solid-state batteries is advantageous for improving the power density by increasing the geometric complexity of battery components, such as electrodes and electrolytes. In the present study, bulk three-dimensional Li1+x Al x Ti2−x (PO4)3 (LATP) electrolyte samples were prepared using the laser powder bed fusion (L-PBF) additive manufacturing method. Li3PO4 (LPO) was added to LATP to compensate for lithium vaporization during processing. Chemical compositions included 0, 1, 3, and 5 wt. % LPO. Resulting ionic conductivity values ranged from 1.4 × 10−6–6.4 × 10−8 S cm−1, with the highest value for the sample with a chemical composition of 3 wt. % LPO. Microstructural features were carefully measured for each chemical composition and correlated with each other and with ionic conductivity. These features and their corresponding ranges include: porosity (ranging from 5% to 19%), crack density (0.09–0.15 mm mm−2), concentration of residual LPO (0%–16%), and concentration and Feret diameter of secondary phases, AlPO4 (11%–18%, 0.40–0.61 µm) and TiO2 (9%–11%, 0.50–0.78). Correlations between the microstructural features and ionic conductivity ranged from −0.88 to 0.99. The strongest negative correlation was between crack density and ionic conductivity (−0.88), confirming the important role that processing defects play in limiting the performance of bulk solid-state electrolytes. The strongest positive correlation was between the concentration of AlPO4 and ionic conductivity (0.99), which is attributed to AlPO4 acting as a sintering aid and the role it plays in reducing the crack density. Our results indicate that additions of LPO can be used to balance competing microstructural features to design bulk three-dimensional LATP samples with improved ionic conductivity. As such, refinement of the chemical composition offers a promising approach to improving the processability and performance of functional ceramics prepared using binderless, laser-based additive manufacturing for solid-state battery applications.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3