Scalable and cost-effective fabrication of high-performance self-powered heterojunction UV-photodetectors using slot-die printing of triple-cation lead perovskite coupled with triboelectric nanogenerators

Author:

Mahmoodpour Sajjad,Shooshtari Leyla,Rafiefard Nassim,Mohammadpour RahelehORCID,Taghavinia NimaORCID,Vashaee DaryooshORCID

Abstract

Abstract The demand for continuous monitoring of ultraviolet (UV) radiation, which poses significant health risks, has grown significantly with the advent of the internet of things (IoT) for human health. The need for a self-powered system that does not rely on battery charging in environmental conditions has led to the exploration of triboelectric nanogenerators (TENGs) as a promising energy source for sensor systems. In this study, we present a fully printed UV photodetector (UV-PD) that is fabricated through scalable slot-die printing of either single-layer triple-cation mixed halide perovskite (TCMHP) or a heterojunction of TiO2/TCMHP on patterned fluorine-doped tin oxide (FTO). The integrated TENG generates the required energy from the tapping of Kapton to the FTO contact, making the device self-powered. Our self-powered PD exhibits an excellent responsivity and detectivity of 71.4 mA W−1 and 6.92 × 1010 Jones, respectively, under a 395 nm wavelength, significantly outperforming spin-coated TCMHP-based devices. We further optimized the performance of our integrated TENG-powered heterojunction TiO2/TCMHP UV-PD by fabricating sensors with groove spacings of 2, 3, 5, and 8 mm. The optimized device demonstrated an unprecedented responsivity, detectivity, and EQE% of 151.9 mA W−1, 1.29 × 1011 Jones, and 47.8%, respectively, under UV irradiation. Our work represents a significant step towards large-scale industrial flexible self-powered UV detection devices that can protect human health and safety. This study highlights the potential of scalable and cost-effective slot-die printing techniques for the industrial production of high-performance self-powered UV sensors, with significant implications for IoT-based health monitoring and environmental protection applications.

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3