Abstract
Abstract
The effect of electrolysis operations on Ni-YSZ fuel electrode stability was studied at different current densities and fuel mixtures during 1000 h life tests. For a typical electrolysis mixture of 50% H2/50% H2O and 0.6 A cm−2 current density, cell ohmic resistance values were reasonably stable and no structural changes occurred. However, for more reducing conditions (97% H2/3% H2O), increasing the current density above 0.4 A cm−2 increased the ohmic resistance accompanied by significant electrolyte degradation including fracture and void formation at grain boundaries. Numerical analysis was carried out to determine the effective oxygen partial pressure across the electrolyte. The results show that the oxygen partial pressure values at high current density and low steam content may be low enough to reduce zirconia to form a Ni-Zr alloy product, initiating the observed electrolyte structural degradation.
Funder
US National Science Foundation
DOE
Subject
Materials Chemistry,General Energy,Materials Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献