Synthetic control over the energy transfer and charge transfer between carbon dots and covalent organic framework

Author:

Feijoo Julian,Paliušytė Klaudija,Schneider JennyORCID

Abstract

Abstract Carbon dots (CDs) are environmentally benign, strongly photoluminescent, metal free nanoparticles. Interfacing them with tailor-made organic semiconductors possesing an ordered channel structure such as covalent organic frameworks (COFs) promises to yield multifunctional materials. In this study, microwave-derived CDs are successfully incorporated into the porous structure of COF in a one-pot synthesis in which the condensation reaction between benzo[1,2-b:4,5-b′]dithiophene-2,6-dicarboxaldehyde (BDT) and 1,1,2,2-tetra(p-aminophenyl)ethylene (ETTA) is conducted in the presence of CDs. A detailed structural and optoelectronic characterization of the COF/CDs composite reveals that upon tuning the CDs loadings encapsulated in COF the interaction between both components can be controlled allowing the switch between energy and charge transfer. At CDs loadings ⩽20 wt%, strong binding of CDs to the COF enables charge transfer evinced from the quenched photoluminescence (PL) of both components and accelerated exciton decay kinetics of the COF. At CDs loadings ⩾30 wt% Förster resonance energy transfer from CDs to COF prevails, leading to enhanced COF PL. Our study underlines the interaction mechanism in organic composites and provides the knowledge required for the design of novel functional materials with applications in photocatalysis, optoelectronics and sensing.

Funder

Alexander von Humboldt Foundation

LMU Center for NanoScience

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3