Abstract
Abstract
Defects at the grain boundaries and surfaces of perovskite thin films are the key factors that cause nonradiative recombination, thus restricting the performance of perovskite solar cells (Pero-SCs). By introducing foreign additives to manage the chemical environment of the precursor, perovskite films can obtain optimized morphology and reduced defects, thereby enhancing the photovoltaic performance and stability of derived Pero-SCs. Herein, we report the bifunctional molecule metformin hydrochloride (MetHCl), whose multidentate structure is capable of simultaneously passivating several sorts of defects in perovskite films. Concurrently, the strong binding ability to Pb2+ makes it impressive in regulating perovskite crystallization. The nonvolatile MetHCl can remain in the perovskite film, contributing to acquiring a high-quality film with denser grains and fewer pinholes. Finally, p-i-n Pero-SCs containing the MetHCl additive exhibited enhanced stability and achieved a champion power conversion efficiency of 21.59% with an open-circuit voltage of 1.17 V.
Funder
The Postgraduate Research & Practice Innovation Program of Jiangsu Province
National Natural Science Foundation of China
Subject
Materials Chemistry,General Energy,Materials Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献