A conceptual design of a thermal switch capacitor in a magnetocaloric device: experimental characterization of properties and simulations of operating characteristics

Author:

Petelin NadaORCID,Kalin Mitjan,Kitanovski Andrej

Abstract

Abstract The quest for better performance from magnetocaloric devices has led to the development of thermal control devices, such as thermal switches, thermal diodes, and thermal capacitors. These devices are capable of controlling the intensity and direction of the heat flowing between the magnetocaloric material and the heat source or heat sink, and therefore have the potential to simultaneously improve the power density and energy efficiency of magnetocaloric systems. We have developed a new type of thermal control device, i.e., a silicon mechanical thermal switch capacitor ( TSC). In this paper we first review recently developed thermal switches based on micro-electromechanical systems and present the operation and structure of our new TSC. Then, the results of the parametric experimental study on the thermal contact resistance, as one of the most important parameters affecting the thermal performance of the device, are presented. These experimental data were later used in a numerical model for a magnetocaloric device with a thermal switch-capacitor. The results of the study show that for a single embodiment, a maximum cooling power density of 970 W m−2 (510 W kgmcm −1) could be achieved for a zero-temperature span and an operating frequency of 5 Hz. However, a larger temperature span could be achieved by cascading multiple magnetocaloric elements with TSCs. We have shown that the compact TSC can be used in caloric devices, even with small temperature variations, and can be used in a variety of practical applications requiring thermal regulation.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

Reference90 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3