Current status of n-type SnS: paving the way for SnS homojunction solar cells

Author:

Suzuki IsseiORCID,Kawanishi SakikoORCID,Omata TakahisaORCID,Yanagi HiroshiORCID

Abstract

Abstract Orthorhombic SnS is a promising thin-film solar-cell material composed of safe and abundant elements with suitable optical properties for photovoltaic application. For approximately two decades, SnS solar cells have employed heterojunction structures with p-type SnS and other n-type semiconductors because undoped SnS typically exhibits p-type electrical conduction. However, their conversion efficiency has remained stagnant at 4%–5% for a long time. A breakthrough is required to significantly improve their conversion efficiencies before SnS solar cells can be put into practical use. Therefore, this comprehensive review article establishes the current state of the art in SnS solar cells, with an aim to accelerate both fundamental research and practical applications in this field. We discuss issues specific to SnS heterojunction solar cells, the advantages of the homojunction structure, and summarize recent advances in the n-type conversion of SnS by impurity doping, which is required to form a homojunction. The latter half of this article describes the latest research on the fabrication of n-type single crystals and films of halogen-doped n-type SnS, which is prepared via a doping system suitable for practical use. We conclude the article by summarizing the current status and future work on SnS homojunction devices, including the development of high-efficiency multi-junction SnS solar cells by band gap engineering.

Funder

Japan Society for the Promotion of Science

Research Program of “Five-star Alliance” in “NJRC Mater. & Dev.”

Murata Science Foundation

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3