Abstract
Abstract
In this work, first-principles calculations of Cu2ZnSnS4, Cu2ZnGeS4 and Cu2ZnSiS4 are performed to highlight the impact of the cationic substitution on the structural, electronic and optical properties of kesterite compounds. Direct bandgaps are reported with values of 1.32, 1.89 and 3.06 eV respectively for Cu2ZnSnS4, Cu2ZnGeS4 and Cu2ZnSiS4 and absorption coefficients of the order of 104 cm−1 are obtained, indicating the applicability of these materials as absorber layer for solar cell applications. In the second part of this study, ab initio results are used as input data to model the electrical power conversion efficiency of kesterite-based solar cells. In that perspective, we used an improved version of the Shockley–Queisser model including non-radiative recombination via an external parameter defined as the internal quantum efficiency. Based on predicted optimal absorber layer thicknesses, the variation of the solar cell maximal efficiency is studied as a function of the non-radiative recombination rate. Maximal efficiencies of 25.71%, 19.85% and 3.10% are reported respectively for Cu2ZnSnS4, Cu2ZnGeS4 and Cu2ZnSiS4 for vanishing non-radiative recombination rate. Using an internal quantum efficiency value providing experimentally comparable
V
O
C
values, cell efficiencies of 15.88%, 14.98% and 2.66% are reported respectively for Cu2ZnSnS4, Cu2ZnGeS4 and Cu2ZnSiS4. We confirm the suitability of Cu2ZnSnS4 in single junction solar cells, with a possible efficiency improvement of nearly 10% enabled through the reduction of the non-radiative recombination rate. In addition, Cu2ZnGeS4 appears to be an interesting candidate as top cell absorber layer for tandem approaches whereas Cu2ZnSiS4 might be interesting for transparent photovoltaic windows.
Subject
Materials Chemistry,General Energy,Materials Science (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献