2021 roadmap for sodium-ion batteries

Author:

Tapia-Ruiz NuriaORCID,Armstrong A RobertORCID,Alptekin HandeORCID,Amores Marco A,Au HeatherORCID,Barker JerryORCID,Boston Rebecca,Brant William RORCID,Brittain Jake M,Chen Yue,Chhowalla Manish,Choi Yong-SeokORCID,Costa Sara I RORCID,Crespo Ribadeneyra MariaORCID,Cussen Serena AORCID,Cussen Edmund J,David William I F,Desai Aamod VORCID,Dickson Stewart A M,Eweka Emmanuel I,Forero-Saboya Juan DORCID,Grey Clare P,Griffin John MORCID,Gross Peter,Hua Xiao,Irvine John T SORCID,Johansson PatrikORCID,Jones Martin O,Karlsmo MartinORCID,Kendrick EmmaORCID,Kim Eunjeong,Kolosov Oleg VORCID,Li Zhuangnan,Mertens Stijn F LORCID,Mogensen Ronnie,Monconduit LaureORCID,Morris Russell E,Naylor Andrew JORCID,Nikman Shahin,O’Keefe Christopher A,Ould Darren M C,Palgrave R G,Poizot PhilippeORCID,Ponrouch Alexandre,Renault StévenORCID,Reynolds Emily M,Rudola AshishORCID,Sayers RuthORCID,Scanlon David O,Sen S,Seymour Valerie RORCID,Silván BegoñaORCID,Sougrati Moulay TaharORCID,Stievano LorenzoORCID,Stone Grant S,Thomas Chris IORCID,Titirici Maria-MagdalenaORCID,Tong JinchengORCID,Wood Thomas JORCID,Wright Dominic S,Younesi RezaORCID

Abstract

Abstract Increasing concerns regarding the sustainability of lithium sources, due to their limited availability and consequent expected price increase, have raised awareness of the importance of developing alternative energy-storage candidates that can sustain the ever-growing energy demand. Furthermore, limitations on the availability of the transition metals used in the manufacturing of cathode materials, together with questionable mining practices, are driving development towards more sustainable elements. Given the uniformly high abundance and cost-effectiveness of sodium, as well as its very suitable redox potential (close to that of lithium), sodium-ion battery technology offers tremendous potential to be a counterpart to lithium-ion batteries (LIBs) in different application scenarios, such as stationary energy storage and low-cost vehicles. This potential is reflected by the major investments that are being made by industry in a wide variety of markets and in diverse material combinations. Despite the associated advantages of being a drop-in replacement for LIBs, there are remarkable differences in the physicochemical properties between sodium and lithium that give rise to different behaviours, for example, different coordination preferences in compounds, desolvation energies, or solubility of the solid–electrolyte interphase inorganic salt components. This demands a more detailed study of the underlying physical and chemical processes occurring in sodium-ion batteries and allows great scope for groundbreaking advances in the field, from lab-scale to scale-up. This roadmap provides an extensive review by experts in academia and industry of the current state of the art in 2021 and the different research directions and strategies currently underway to improve the performance of sodium-ion batteries. The aim is to provide an opinion with respect to the current challenges and opportunities, from the fundamental properties to the practical applications of this technology.

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

Reference302 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3