Hydrogen from wastewater by photocatalytic and photoelectrochemical treatment

Author:

Rioja-Cabanillas AdrianaORCID,Valdesueiro DavidORCID,Fernández-Ibáñez PilarORCID,Byrne John AnthonyORCID

Abstract

Abstract In recent years, the intensification of human activities has led to an increase in waste production and energy demand. The treatment of pollutants contained in wastewater coupled to energy recovery is an attractive solution to simultaneously reduce environmental pollution and provide alternative energy sources. Hydrogen represents a clean energy carrier for the transition to a decarbonized society. Hydrogen can be generated by photosynthetic water splitting where oxygen and hydrogen are produced, and the process is driven by the light energy absorbed by the photocatalyst. Alternatively, hydrogen may be generated from hydrogenated pollutants in water through photocatalysis, and the overall reaction is thermodynamically more favourable than water splitting for hydrogen. This review is focused on recent developments in research surrounding photocatalytic and photoelectrochemical hydrogen production from pollutants that may be found in wastewater. The fundamentals of photocatalysis and photoelectrochemical cells are discussed, along with materials, and efficiency determination. Then the review focuses on hydrogen production linked to the oxidation of compounds found in wastewater. Some research has investigated hydrogen production from wastewater mixtures such as olive mill wastewater, juice production wastewater and waste activated sludge. This is an exciting area for research in photocatalysis and semiconductor photoelectrochemistry with real potential for scale up in niche applications.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3