Quantitative evaluation of biaxial compressive strain and its impact on proton conduction and diffusion in yttrium-doped barium zirconate epitaxial thin films

Author:

Hyodo JunjiORCID,Yamazaki YoshihiroORCID

Abstract

Abstract Proton-conducting oxides, including 20 mol% yttrium-doped BaZrO3 (BZY20), have attracted considerable attention as electrolytes for environmentally friendly electrochemical cells, such as proton ceramic fuel cells (PCFCs) and proton-conducting solid oxide cells. These oxides exhibit fast proton conduction due to the complex physicochemical phenomena of hydration, chemical lattice expansion, proton migration, proton trapping, and local distortion. Using a proton-conducting oxide as an electrolyte film in electrochemical devices introduces an interface, which thermally and chemically generates mechanical strain. Here, we briefly review the current state of research into proton-conducting oxides in bulk samples and films used in electrochemical devices. We fabricated 18 and 500 nm thick 20 mol% BZY20 epitaxial films on (001) Nb-doped SrTiO3 single-crystal substrates to form a model interface between proton-conductive and non-proton-conductive materials, using pulsed laser deposition, and quantified the mechanical strain, proton concentration, proton conductivity, and diffusivity using thin-film x-ray diffractometry, thermogravimetry, secondary ion mass spectrometry, and AC impedance spectroscopy. Compressive strains of −2.1% and −0.85% were measured for the 18 and 500 nm thick films, respectively, and these strains reduced both the proton conduction and diffusion by five and one orders of magnitude, respectively, at 375 °C. Analysis based on a simple trapping model revealed that the decrease in proton conduction results from the slower diffusion of mobile protons with a negligible change in the proton trapping contribution. The model shows that the high ohmic resistance reported for a high-performance PCFC with a power density of 740 mW cm−2 at 600 °C can be solely explained by the estimated compressive strain in the cells. This study shows that minimizing biaxial compressive strain by appropriate choices of the electrolyte–electrode combination and fabrication process is important for maximizing the performance of electrochemical cells.

Funder

Precursory Research for Embryonic Science and Technology

Core Research for Evolutional Science and Technology

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3