Entropy change reversibility in MnNi1−x Co x Ge0.97Al0.03 near the triple point

Author:

Samanta TapasORCID,Taake Chris,Bondzio Laila,Caron Luana

Abstract

Abstract The nature of the phase transition has been studied in MnNi1−x Co x Ge0.97Al0.03 (x= 0.20–0.50) through magnetization, differential scanning calorimetry and x-ray diffraction measurements; and the associated reversibility in the magnetocaloric effect has been examined. A small amount of Al substitution for Ge can lower the structural phase transition temperature, resulting in a coupled first-order magnetostructural transition (MST) from a ferromagnetic orthorhombic to a paramagnetic hexagonal phase in MnNi1−x Co x Ge0.97Al0.03. Interestingly, a composition-dependent triple point (TP) has been detected in the studied system, where the first-order MST is split into an additional phase boundary at higher temperature with a second-order transition character. The critical-field-value of the field-induced MST decreases with increasing Co concentration and disappears at the TP (x= 0.37) resembling most field-sensitive MST among the studied compositions. An increase of the hexagonal lattice parameter a hex near the TP indicates a lattice softening associated with an enhancement of the vibrational amplitude in the Ni/Co site. The lattice softening leads to a larger field-induced structural entropy change (structural entropy change≫ magnetic entropy change, for this class of materials) with the application of a lower field, which results in a larger reversibility of the low-field entropy change (|ΔS rev| = 6.9 J kg−1 K for Δμ 0 H = 2 T) at the TP.

Funder

Bundesministerium für Bildung und Forschung

Publisher

IOP Publishing

Subject

Materials Chemistry,General Energy,Materials Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3